Как работает бионический глаз
Главный тренд офтальмологии будущего — бионические глаза. В 2018 году уже существуют четыре успешных проекта, и искусственные глаза сейчас — далеко не картинка из футуристического фэнтези.
Фильм «Терминатор»
Самый интересный проект — это Argus II от Second Sight. Устройство состоит из импланта, очков, камеры, кабеля и видеопроцессора. Имплант, имеющий передатчик, вживляется в сетчатку. Носимая с очками камера фиксирует изображения, которые процессор обрабатывает, генерируя сигнал, передатчик импланта принимает его и стимулирует клетки сетчатки.
В чем недостаток технологии? Устройство стоит баснословные 150 тысяч долларов и не возвращает зрение полностью, лишь позволяя различать силуэты фигур. По состоянию на 2020 год 250 человек носят Argus II, что, безусловно, ничтожно мало.
У Argus II есть аналоги. Например, Boston Retinal Implant. Он тоже создан специально для пациентов с макулодистрофией и пигментным ретинитом (разложением фоторецепторов сетчатки). Он работает по похожему принципу, направляя сигналы нервным клеткам и создавая схематичное изображение объекта. Стоит назвать и IRIS, созданный для пациентов на последних стадиях деградации сетчатки.
Бионический глаз представлен полимерной матрицей, в которой имеются светодиоды. Она может фиксировать даже слабые электрические импульсы, а затем передавать их на нервные окончания. Сигналы, которые преобразуются в электрическую форму, активизируют сохранившиеся нейроны сетчатки и оптического нерва.
Видеокамера, которая встраивается в очки, записывает картинку, а полученные данные отправляет в конвертор. Здесь сигнал преобразуется и попадает на фотосенсор, который вживлен в сетчатку глазного яблока. Отсюда электрические импульсы уже проникают в зрительные центры мозга человека через волокна оптического нерва.
I’ll be back: создан искусственный глаз, превосходящий по возможностям человеческий
Человеческий глаз представляет собой сложный инструмент: изображение поступает через роговицу, изогнутую линзу в передней области, и проходит через стекловидное тело, прежде чем достичь светочувствительной сетчатки, которая передает сигналы зрительному нерву, переносящему их в мозг. Инженеры пытаются воспроизвести эту структуру уже несколько десятилетий, и теперь новый искусственный глаз успешно имитирует сферическую форму естественного органа. Исследователи надеются, что это достижение может привести к появлению роботов с более четким зрением и более качественным протезам. Статья об этом необычном приборе была опубликована в среду в журнале Nature.
Исследование базируется на том, что перовскит — светочувствительный материал, используемый в солнечных элементах — может быть применен для создания чрезвычайно тонких нанопроводов длиной в несколько тысячных долей миллиметра. «Эти провода имитируют структуру длинных тонких фоторецепторных клеток глаза», — говорит соавтор исследования Чжийонг Фан, инженер-электронщик и компьютерщик из Гонконгского университета науки и техники. «Но трудность заключается в следующем: как мы можем изготовить массив нанопроводов в полусферической подложке для формирования полусферической сетчатки?»
Создание изогнутой сетчатки важно, потому что свет попадает на нее только после прохождения через изогнутую линзу. «Когда вы пытаетесь что-то увидеть, изображение, которое формируется после роговицы, на самом деле искривлено», — говорит Хунруй Цзян, инженер-электрик из Университета Висконсин-Мэдисон. «Если у вас плоский сенсор, то изображение не получится резким». Сетчатку можно сделать изогнутой, но современные электронные датчики света все равно жесткие и плоские.
Чтобы решить эту проблему, Фан и его коллеги деформировали мягкую алюминиевую фольгу в полусферическую форму. Затем они обработали металл с помощью электрохимического процесса, который превратил его в изолятор под названием оксид алюминия. В результате этого процесса появился материал, усеянный наноразмерными порами.
В итоге исследователи получили искривленное полушарие, которое имело удобные плотно сгруппированные отверстия, в которых они смогли «вырастить» нанопровода из перовскита. «Плотность нанопроводов очень высокая», — говорит Цзян. «Она сопоставима — а на самом деле даже выше — чем плотность фоторецепторов в человеческих глазах».
Сравнение настоящего и искусственного глаза.
Однако на деле пока что хватает ограничений. Так, искусственная сетчатка имеет около 460 миллионов световых сенсоров на квадратный сантиметр: для сравнения, в нашем глазу около 10 миллионов фоторецепторов располагается на такой же площади. Но в текущей конфигурации каждый провод, подключенный к искусственной сетчатке, захватывает сразу несколько сенсоров, поэтому на деле итоговое разрешение оказывается сравнимо с таковым у человеческого глаза.
Как только у них появилась изогнутая «сетчатка», ученые добавили ее в искусственный глаз, который имеет изогнутую линзу спереди. Вдохновленная специальной жидкостью в реальном глазу, команда исследователей наполнила его биомиметическую версию ионной жидкостью — разновидностью солевого раствора, в котором могут перемещаться заряженные частицы.
«Один очень важный процесс происходит внутри полости, которую мы наполнили ионной жидкостью», — говорит Фан. «Как только эти нанопровода начнут генерировать ток, часть заряда будет поглощена некоторыми ионами». Этот электрический обмен позволяет нанопроводам из перовскита выполнять электрохимическую функцию обнаружения света и передавать этот сигнал на внешнюю электронику обработки изображений.
Протестировав получившееся искусственное глазное яблоко, ученые обнаружили, что оно регистрирует изменение в освещении быстрее, чем человеческий глаз — приблизительно за 30-40 миллисекунд, а не 40-150. Устройство также может видеть тусклый свет примерно так же, как и человеческий глаз. Хотя его 100-градусное поле зрения не так широко, как 150 градусов, которые может охватить человеческий глаз, это все же лучше, чем 70 градусов, видимых обычными плоскими датчиками изображения.
Принцип работы искусственного глаза.
Кроме того, искусственный глаз создает изображения, которые имеют больший контраст и более четкие края, чем те, которые генерируются плоским оптическим датчиком с аналогичным количеством пикселей. В некотором смысле искусственный глаз улучшает естественное зрение: он может улавливать больший диапазон длин волн и не имеет слепого пятна.
Фан надеется сотрудничать с медицинскими исследователями для создания протезов на основе своего устройства. Однако это может потребовать гораздо большего развития технологий. Искусственный глаз «действительно элегантен, это удивительная работа», — говорит Джесси Дорн, вице-президент по клиническим и научным вопросам в биомедицинской компании Second Sight. «Но [авторы исследования] не говорят о том, как это может быть связано с зрительной системой человека».
Джесси работает над устройствами для лечения слепоты, включая протез сетчатки под названием Argus II, и говорит, что разработка электронного интерфейса — это только первый шаг. Такое устройство должно взаимодействовать с человеческим мозгом для получения изображений. По ее словам, «это одна из самых больших проблем: как безопасно и надежно имплантировать интерфейс высокого разрешения, а затем [заставить его] работать с человеческой зрительной системой».
Кроме того, существуют различные типы слепоты, и идеальные глаза не всегда могут дать идеальное зрение. Например, развитие мозга в младенчестве и детстве имеет решающее значение для обработки зрительного восприятия, поэтому у человека, который родился слепым, может никогда не развиться определенная область мозга, необходимая, чтобы видеть протезными глазами в дальнейшей жизни. Дорн отмечает, что все пациенты, получившие имплант Argus II — это взрослые, которые потеряли зрение относительно недавно.
Принцип подключения искусственного глаза и процесс получения исходного изображения.
И даже они добиваются сильно различающихся уровней успеха: кто-то получает способность различать свет и тьму, а кто-то может даже различать контуры предметов. Тем не менее, Дорн считает, что любая визуальная связь с окружающим миром может привести к большей независимости и большей свободе передвижения. И протезы — не единственное ценное применение искусственных глаз: такие устройства могут непосредственно использоваться в роботизированном зрении.
«Имитация естественных глаз была мечтой для многих оптических инженеров», — говорит Цзян, отмечая, что некоторые исследователи стремятся имитировать глаза млекопитающих, а другие наоборот работают с насекомоподобными сетчатыми глазами. В этой области наконец-то начинают происходить настоящие прорывы, добавляет он. «Я думаю, что примерно через 10 лет мы увидим некоторые практические применения таких бионических глаз».
iGuides в Telegram — t.me/igmedia iGuides в Яндекс.Дзен — zen.yandex.ru/iguides.ru
Когда необходимо протезирование
Глазные протезы решают не только эстетические и психологические проблемы пациента. Если человек, утративший глаз, не будет носить его заменитель, со временем конъюнктивальная полость станет меньше, а ресницы начнут загибаться вовнутрь, доставляя немало неудобств и становясь главной причиной развития хронических воспалительных процессов.
Особенно важную роль протезирование играет у детей – нахождение в конъюнктивальной полости заменителя глаза стимулирует процессы роста костей орбиты. Если протезирование не проводится, кости растут медленно, и развивается асимметрия лица. Когда это необходимо, врачи перед протезированием проводят пластику век, коррекцию полости конъюнктивы, создают опорно-двигательную культю, проводят энуклеацию, эвисцерацию либо эвисцероэнуклеацию с имплантацией.
Как правило, протезирование назначается в случае частичного или полного удаления глазного яблока из-за таких заболеваний:
- Обширная травма глаза с последующим его удалением.
- Врожденные аномалии, в результате которых развилась атрофия зрительного органа с последующим некрозом.
- Атрофия зрительного нерва в совокупности с инфекционным невритом, давшая осложнение в виде заражения всех тканей глаза.
- Раковые опухоли.
Глаз робота. Создан работающий искусственный глаз — копия человеческого
Ученые из Гонконгского университета науки и технологий создали роботизированный глаз, строение которого повторяет строение настоящего глаза человека и который при этом действительно способен видеть, передает со ссылкоЙ на статью в
Команда исследователей, взяв за основу строение реального глаза, повторила ее, адаптировав к возможностям механики.
Воссоздать работу человеческого глаза в техническом варианте удалось ученым под руководством Чжиюн Фаня (Zhiyong Fan) из Гонконгского университета науки и технологии. Получившееся изобретение имеет форму шара диаметром около двух сантиметров. Внутри шара находится жидкость, проводящая электрический ток.
Как сообщил автор работы Чжиюнь Фан, в перспективе на основе данной разработки можно будет создать более совершенные протезы и гуманоидную робототехнику.
Сетчатка сделана с помощью нанопроводов, ну а искусственным хрусталиком сейчас мало кого можно удивить: с такими интраокулярными линзами ходят многие пожилые люди, прооперированные из-за помутнения собственного.
Ученые получили такой глаз следующим образом. С помощью полусферических пресс-форм они изгибали алюминиевую фольгу с толщиной в полмиллиметра для получения полусферической оболочки, которую затем подвергали анодизации для получения пористого слоя оксида алюминия толщиной в 40 микрометров с заданным размером пор. После этого авторы нанесли свинец на дно пор алюминиевой матрицы методом электроосаждения и затем протравили поверхность для избавления от незаполненной матрицы и оставшегося алюминия. Полученные пленки перенесли в трубчатую печь и подвергал конверсии в нанонити перовскита — йодида свинца формамидиния. Для увеличения адгезии на поверхность пленок напылили слой индия в 20 нанометров.
Контактный массив жидкого металла исследователи обеспечили полидиметилсилоксановой формой в виде ежа (такую форму напечатали на 3D принтере). В мягкие трубки они залили расплав индия и галлия, а затем соединили форму со светочувствительным слоем. Чтобы избежать точечного подключения каждого пикселя нанопроводами напрямую, ученые использовали жидкий металл, который самостоятельно создаст контакт за счет поверхностного натяжения. В передней алюминиевой полусфере глаза авторы работы сделали отверстие, а остальную часть полусферы покрыли вольфрамом, который служит противоэлектродом для электрохимического оптического детектора. Они склеили полусферы между собой с помощью эпоксидного клея, во внутреннюю область залили жидкий ионный электролит бис(трифторметилсульфонил)имид и йодид 1-бутил-3-метилимидазола, а в конце приклеили в отверстие передней полусферы собирающую линзу. Авторы сконструировали прототип с сотней пикселей с разрешением в 1,6 миллиметра из-за толщины жидких проводов, которую сложно уменьшить до нескольких микрометров, однако в будущем они намерены использовать металлические микроиглы микрометрового диаметра.
В настоящем глазу свет, преломляясь в хрусталике, достигает фоторецепторов на сетчатке, а они преобразуют фотоны в сигналы, которые и передают по нервным путям в зрительные отделы мозга. Именно это один из ключевых камней преткновения для создания эффективно работающих искусственных глаз, которые могли бы помочь людям, потерявшим зрение.
«Бионический глаз — это трехмерная искусственная сетчатка, которая имеет высокоплотную матрицу светочувствительных нанопроводов. Снаружи глаз покрывает изогнутая оболочка оксида алюминия с микродатчиками из перовскита», — пояснили специалисты.
Нанопровода, имитирующие зрительную кору головного мозга, передают визуальную информацию, собранную сенсорами, на компьютер, где они обрабатываются.
Читайте в тему: Вакцину с наноиглами против коронавируса создают ученые США
Ученые протестировали способности бионического глаза. Он успешно различил буквы I, E и Y, не спутав их. На сегодня такой робоглаз способен создавать очень «грубые» изображения: если настоящий глаз дает картинку качеством порядка 120-140 мегапикселей, то искусственный — всего 100 пикселей.
Пока разница составляет много порядков не в пользу искусственного, но важно, что сам принцип оказался рабочим. В будущем картинку можно будет «докрутить», а основная проблема пока лежит в области «стыковки» механического глаза и человеческого мозга, то есть соединения в зоне зрительного нерва. Работа над ней потребуется немалая, особенно если устройство нужно будет адаптировать к постоянному ношению. По мнению экспертов, это может занять до десяти лет.
Кроме прочего, гаджет нуждается в источнике питания: предполагается, что его обеспечит солнечный свет. В целом ученые настроены оптимистично: такой глаз не просто способен быть «костылем» в отсутствие собственного. Авторы работы утверждают, что особенности конструкции дадут дополнительные возможности.
Нанопроволоки настолько чувствительны, что могут превзойти оптический диапазон длин волн человеческого глаза, позволяя ему реагировать на длины порядка 800 нанометров — уровня порога между визуальным светом и излучением в инфракрасном диапазоне.
Читайте в тему: Робот-паук, робот-танцор, рыба-робот приедут на фестиваль в Алматы
Ученые поясняют, что это дает способность такому глазу различать предметы в темноте — в условиях, когда человеческий глаз на это уже не способен. Кроме того, исследователи утверждают, что бионическое око может реагировать на изменения света быстрее, чем человеческое, что позволяет ему приспособиться к изменяющимся условиям за меньшее время.
Качество картинки со временем может на порядок превзойти качество, даваемое человеческим зрением.
Правила ухода за глазными протезами
Первое и главное правило эксплуатации глазных протезов – их регулярная замена. Для взрослых максимальный срок ношения одного протеза составляет 1–1,5 года, для детей – не более 6 месяцев, так как их череп и глазница постоянно растут и меняют форму. Если человек не снимает искусственный глаз дольше рекомендованных сроков, он утратит свой эстетичный вид, став шероховатым, тусклым, кроме того, накапливает бактерии. Ткани вокруг протеза могут начать воспаляться, гноиться.
Условия замены и хранение
Взрослые пациенты носят протез в течение 8-10 месяцев, а затем заменяют его на новый. Делать это нужно обязательно, поскольку поверхность изделия в результате постоянного ношения становится шершавой, на ней появляются борозды и мелкие раковины, травмирующие слизистую глаза.
Необходимые атрибуты для хранения протеза
Носить протез нужно постоянно. Если вы снимаете его на ночь, то не кладите в воду или дезинфицирующий раствор – вымойте с теплой водой и мылом, положите на ткань.
Ошибка в коде
Носимые, вшиваемые и встраиваемые устройства — не единственная надежда офтальмологии. Для того чтобы вернуть зрение, можно переписать генетический код, из-за ошибки в котором человек начал слепнуть. Метод CRISPR, который базируется на инъекции раствора с вирусом, несущим правильный вариант ДНК, излечивает наследственные заболевания.
Исправление кода позволяет бороться с возрастной дегенерацией сетчатки, а также с амаврозом Лебера — крайне редким недугом, убивающим светочувствительные клетки. В мире им страдает около 6 тысяч человек. Препарат Luxturna обещает покончить с ним. Он содержит раствор с правильной версией гена RPE65, шифрующего структуру необходимых белков. Это инъекционный препарат — его вводят в глаз микроскопической иглой.
Искусственный глаз чувствует свет быстрее настоящего
Сетчатка из перовскитных фотоэлементов даёт изображение всего из ста пикселей, зато реагирует на свет быстрее, чем натуральная.
Попытки создать полностью искусственный аналог глаза предпринимались неоднократно, однако такие устройства по многим параметрам уступали настоящему глазу. Пусть у нас есть искусственные светочувствительные элементы-рецепторы, их нужно ещё правильным образом расположить. Если они будут лежать просто на ровной плоскости, то большая часть света, проходящая через линзу (искусственный хрусталик), будет рассеиваться. Чтобы острота такого глаза была сопоставима с настоящим, его фоторецепторы должны располагаться куполом – так, как в настоящей сетчатке, которая выстилает полусферический «задник» нашего глаза. Округлая форма глаза, в котором сетчатка выстилает внутреннюю поверхность. Если же изогнуть такую плоскую сетчатку, то придётся пожертвовать частью фотоэлементов – их плотность придётся уменьшить, чтобы в матрице были места, за счёт которых её можно было бы сжимать и растягивать.
(Иллюстрация: PIRO4D / Pixabay)
Схема строения искусственного глаза. (Иллюстрация: L. Gu et al., Nature, 2020)
‹
›
Исследователи из Гонконгского научно-технологического университета вышли из положения, введя фотоэлементы в микропоры уже изогнутой мембраны-носителя, сделанной из оксида алюминия. Это позволило рассадить фоточувствительные элементы намного гуще, чем в предыдущих искусственных глазах: плотность фотоэлементов была 4,6 × 108 на один квадратный сантиметр, что гораздо выше, чем плотность фоторецепторов в сетчатке человеческого глаза – около 107 на один квадратный сантиметр. Фотоэлементы представляли собой нанопровода из разновидности перовскита, состоящей из формамидина, йода и свинца. Роговицу и радужную оболочку сделали из алюминия, покрытого вольфрамовой плёнкой, камера между линзой и «сетчаткой», которая в обычном глазу заполнена стекловидным телом, в искусственном глазу была заполнена ионным раствором, помогавшим электрохимическим реакциям в перовскитных фоторецепторах.
Роль зрительного нерва играли провода из жидкой смеси металлов галлия и индия, заключённых в резиновую оболочку. Провода-нервы контактировали с нанопроводками-фоторецепторами через индиевую прокладку. И хотя теоретически разрешение искусственной сетчатки должно быть больше, чем у обычного нашего глаза (потому что плотность фоторецепторов у него больше), на деле так не было. Дело в том, что каждый провод-нерв был толщиной около 700 микрометров и одновременно собирал сигналы от нескольких фоторецепторов. На самом деле, в человеческом глазу сигнал тоже отчасти суммируется и усредняется – потому что импульсы от нескольких рецепторов-палочек (но не колбочек) стекаются к одной клетке-посреднику. Тем не менее, один пиксель картинки, получаемый от искусственного глаза, был намного крупнее пикселя, который отправляет в мозг глаз натуральный: проводов-нервов к сетчатке удалось подсоединить всего 100, так что и картинка состояла всего из ста пикселей.
Но по другим параметрам искусственный глаз был вполне сопоставим с настоящим, в чём-то и превосходил его. В статье в Nature
говорится, что поле зрения у искусственного глаза почти такое же широкое и нижний предел чувствительности у него такой же, как у естественного, то есть искусственный глаз может видеть в очень тусклом свете. А вот реакция на свет у искусственного глаза была даже быстрее: его фоторецепторы реагировали на световой импульс за 19,2 миллисекунды, а в исходное состояние возвращались как минимум за 23,9 миллисекунды, независимо от длины световой волны. У человеческих рецепторов на реакцию и возврат в исходное состояние уходит от 40 до 150 миллисекунд. То есть в целом искусственный глаз на свет реагирует быстрее.
Как пишет портал Nature
, пока что неясно, как долго такой глаз может работать. Авторы работы говорят, что он нормально функционировал девять часов без перерыва, но, вообще говоря, про электрохимические устройства известно, что со временем они устают. Возможно, на более долгой временной дистанции искусственный глаз начнёт видеть хуже. Но если глаз окажется долговечным, если к нему удастся подсоединить на сто проводов, а тысячу или, чего доброго, миллион, и если производить такую перовскитную сетчатку будет не так сложно, как сейчас (а сейчас её делать дорого и долго), то подобные искусственные глаза в скором времени можно будет увидеть если не у людей, то хотя бы у роботов.
Выводы
Глазное протезирование позволяет пациенту, утратившему глаз, вернуться к нормальной жизни. И во взрослом, и в детском возрасте ношение протезов является обязательным. Плановая замена производится 1-2 раза в год (стеклянные изделия нужно менять чаще).
Хирурги-офтальмологи прибегают к протезированию только в запущенных случаях, когда никакая другая коррекционная практика не способна восстановить глазное яблоко. До тех пор могут применяться различные офтальмологические методики по сохранению глаза, даже с учетом потери его главной функции.
Ученые создали искусственный электрохимический глаз, способный различать буквы. Почему это важно?
В научной фантастике часто встречаются роботы с глазами, которые устроены так же, как человеческий глаз, или бионические протезы, которые позволяют восстановить зрение людям с врожденной или приобретенной слепотой.
В реальной жизни реализовать эту концепцию до сих пор не удавалось. Ученые предприняли множество попыток по разработке таких устройств, но изготовление сферической формы человеческого глаза — особенно полусферической сетчатки — является огромной проблемой, которая серьезно ограничивает функцию искусственных и бионических глаз.
Человеческий глаз работает следующим образом: свет, падающий на него, проходит через систему линз и попадает на рецепторы в сетчатке, которые преобразуют его в нейронные сигналы, они затем передаются в мозг.
Сохранение сферической формы крайне важно при создании искусственного глаза: она обладает широким углом обзора в 150–160 градусов и лучшей способностью к фокусировке, чем иные формы.
Кроме того, человеческий глаз с его полусферической сетчаткой имеет более оригинальную оптическую компоновку, чем, скажем, сенсоры плоских изображений в камерах: форма купола сетчатки естественным образом уменьшает распространение света, прошедшего через линзу, заостряя фокус.
Что именно создали ученые?
В основе искусственного электрохимического глаза лежит массив фотопреобразователей из перовскита, материала, который используется при производстве солнечных батарей. В устройстве он играет роль сетчатки, полусфера которой изготовлена из пористого оксида алюминия. Фотодатчики из перовскита формировались непосредственно внутри этих пор.
Тонкие гибкие провода, изготовленные из жидкого металла (эвтектического галлий-индийского сплава), запечатанные в мягкие резиновые трубки, передают сигналы от фотодатчиков нанопроволоки на внешние схемы для обработки сигналов. Эти провода имитируют нервные волокна, которые соединяют человеческий глаз с мозгом.
Искусственная сетчатка удерживается на месте креплением из силиконового полимера — это позволяет обеспечить правильное выравнивание между проводами и нанопроволокой.
Объектив в сочетании с искусственной радужкой расположен на передней части устройства, как и в человеческом глазе. Сетчатка сзади объединяется с полусферической оболочкой спереди, образуя сферическую камеру, аналог «глазного яблока».
Камера внутри глаза заполнена ионной жидкостью, которая имитирует стекловидное тело — гель, который заполняет пространство между линзой и сетчаткой в человеческом глазу. Общее структурное сходство между искусственным глазом и человеческим устройству придает широкое поле зрения — около 100°. Это сопоставимо примерно с 130° вертикального поля зрения статического человеческого глаза.
В чем важность работы?
В первую очередь в эффективности работы искусственного глаза. Например, искусственная сетчатка может обнаруживать большой диапазон интенсивности света, от 0,3 микроватт до 50 милливатт на квадратный сантиметр. При самой низкой измеренной интенсивности каждая нанопроволока в искусственной сетчатке обнаруживает в среднем 86 фотонов в секунду, что соответствует чувствительности фоторецепторов в сетчатке человека.
Кроме того, когда массив нанопроволок стимулируется регулярными, быстрыми импульсами света, он может генерировать ток в ответ на импульс всего за 19,2 миллисекунд, а затем тратит всего 23,9 миллисекунды для восстановления. Время отклика и восстановления являются важными параметрами, поскольку в конечном итоге они определяют, насколько быстро искусственный глаз может реагировать на световой сигнал. Для сравнения, время реакции и восстановления фоторецепторов в сетчатке человека колеблется от 40 до 150 миллисекунд. То есть искусственный глаз реагирует на изменение освещения быстрее.
Возможно, самым впечатляющим является относительно высокое разрешение изображения, полученного с помощью искусственной сетчатки — около 100 пикселей. Хотя у человеческого глаза около 100 рецепторов, их плотность ниже, чем в искусственном глазе (4,6 × 10 в 8 степени кв. см и 10 в 7 степени кв. см соответственно).
Что уже умеет глаз и для чего будет использоваться?
В ходе испытаний искусственный глаз смог распознать буквы I, У, А и Е, а также некоторые символы. В будущем технология может быть использована как при создании гуманоидных роботов, так и для разработки улучшенных протезов зрения. Однако до этого исследователям еще предстоит много работы.
Во-первых, массив фотодатчиков в настоящее время составляет всего 10 × 10 пикселей с промежутками между пикселями примерно 200 мкм. Это означает, что область обнаружения света имеет ширину всего около 2 мм — намного меньше, чем в глазу человека.
Кроме того, процесс изготовления искусственного глаза включает в себя несколько дорогостоящих и низкопроизводительных этапов — например, травление сфокусированным ионным пучком, который используется для подготовки каждой поры к формированию нанопроволоки.
Во-вторых, чтобы улучшить разрешение и масштаб сетчатки, исследователям необходимо уменьшить размер жидкометаллических проводов. Пока существующие методы не позволяют сделать этого. В-третьих, необходимы дополнительные испытания для установления срока службы искусственной сетчатки.
Тем не менее, исследователи рассчитывают, что электрохимический искусственный глаз будет широко использоваться через 10 лет.
Каким будет зрение будущего?
Уже сейчас офтальмология достигла поразительных успехов: прежде неизлечимую слепоту можно обратить, а наследственные заболевания побороть, переписав несколько участков генетического кода. В каком направлении будет идти развитие? Попробуем предположить:
- Лучше предотвратить, чем лечить. Окулист в смартфоне и нейронная сеть, ставящая диагноз, обещают заметно сократить риск запущенных и едва излечимых болезней глаз. Дополненная реальность (AR) позволит распространять медицинские знания в игровой и необременительной форме. Уже сейчас есть приложения AR, моделирующие последствия катаракты и глаукомы. Знание, как известно, сила.
- Заменить, если нельзя вылечить. Киборгизация — это ключевой медицинский тренд. Нынешние разработки хороши, но они реконструируют зрение лишь отчасти, позволяя различать размытые контуры. В ближайшие десять лет технология будет идти по пути повышения качества изображения и детализации. Важная задача — избавиться от носимых компонентов: камеры, очков, кабеля. Имплант должен стать мягче и, можно сказать, дружелюбнее для тканей человека, чтобы не ранить их. Вероятно, чипы без внешних вспомогательных элементов, вживляемые прямо в мозг, — это самая перспективная ветка киборгизации зрения.
- Дешевле и доступнее: 150 тысяч долларов за устройство пока делают бионические глаза очень далекими от рынка и недосягаемыми для большинства больных. Следующий шаг — сделать их максимально доступными.
- Восстановление за часы: вживление чипов, коррекция сетчатки и даже исправление ДНК требуют хирургического вмешательства. Оно оставляет резь, жжение, фантомные боли и другие неприятные следствия. Препараты будущего будут регенерировать поврежденные ткани за часы.
- Фантастическое зрение для всех: мгновенный снимок с помощью глаза и сетчатка, подключенная к интернету, только сейчас выглядят как научная фантастика.
Бионический глаз и великая тайна зрения
Ирина Резник
15 минут
В России впервые прошла операция по имплантации бионической сетчатки, и скоро потерявший 25 лет назад зрение человек сможет снова увидеть мир. Хотя и не так, как здоровые люди. Возглавлявший хирургическую бригаду директор НИЦ офтальмологии ФГБОУ ВО РНИМУ имени Н.И. Пирогова, созданного на базе ФНИЦ оториноларингологии ФМБА, профессор Христо Тахчиди рассказал «Медновостям», как работает бионический глаз, когда он станет доступен тысячам других пациентов, в чем важность этого эксперимента для науки, и что нужно для успеха любого научно-клинического проекта.
{#vrez.59796}
Христо Периклович, прошла неделя после операции, можно уже делать какие-то выводы?
— Пока еще рано.Сейчас вся электроника отключена, идет классический послеоперационный период: закрываются и рубцуются раны, адаптируются ткани, налаживается глазной тонус, циркуляция внутриглазной жидкости.А мы следим за этими процессами, успокаиваем глаз, приводя его к норме, и дожидаемся окончания биологического ответа на имплантацию посторонних материалов. Все эти материалы небиологические (то есть, об иммунологической реакции на чужеродный белок речь не идет), они практически полностью инертны и принимаются человеческим организмом.
Что это вообще такое — бионический глаз?
— Это электронная система, призванная выполнять функцию глаза.Она позволяет установить связь с мозгом через электронику и воссоздать, таким образом нарушенную заболеванием сетчатки естественную цепочку. Внешняя часть конструкции — это очки с антенной и микрокамерой, которая захватывает изображение и передает его в преобразователь, который крепится у человека сбоку на ремне. Здесь картинка трансформируется в электрические микроимпульсы, которые дальше поступают уже на сетчатку и стимулируют ее оставшиеся функциональные нейроны, после чего изображение поступает в мозг.
Внутренняя часть — собственно сам бионический глаз — также состоит из нескольких элементов. Один из них — электронный чип с 60 электродами — имплантируется внутрь глаза, а другие — крепятся к глазному яблоку на его поверхности. Но и их мы тоже погрузили немного глубже, чтобы они не мешали и не было видны. Мы впервые работали с электроникой, приходилось проверять ее на каждом этапе операции, в ходе которой имплантат мог повредиться. Запускаться электроника будет спустя две недели после операции, где-то после 19 июля. К этому времени глазные ткани должны будут естественным образом восстановиться. И тогда уже будем смотреть, отвечает ли сетчатка на электрический стимул, и есть ли связь с мозгом.
А что увидит ваш пациент?
— Эти системы дают возможность видеть абстрактное черно-белое изображение в виде определенных конфигураций световых фигур. Этонапоминает пиксельную картинку, пока, правда, с очень слабым разрешением. Но это дает человеку социальную реабилитацию, ему будет значительно легче ориентироваться в пространстве. Пройдя обучение по специальной программе, он будет знать, что означают поступающие к нему на сетчатку, а затем в мозг световые фигуры — дверь, окно или тарелку. Со временем аппарат конечно, будет совершенствоваться и давать картину, более близкую к той, что передает естественное зрение.
Такая конструкция может помочь любому ослепшему человеку? Каковы вообще критерии, по которым отбираются пациенты?
— Критерии достаточно специфичные. Во-первых, у пациента обязательно должен быть пигментный ретинит (дегенерация сетчатки). Это такое классическое заболевание, которое поражает периферию сетчатки, постепенно сужая поле зрения, пока, в конечном итоге, это окошко не закрывается совсем. Это заболевание с определенной наследственной компонентой, которое развивается по своему биологическому сценарию, который, к сожалению, пока нами не управляем, хотя уже и найден ответственный за его развитие ген. Процесс идет десятилетия, поражаются, преимущественно, мальчики, которые слепнут в 30-35 лет.
Но, хотя у человека отсутствует предметное зрение, это не абсолютная слепота, когда вообще нет ощущения света. И эта грань — второе условие для имплантации, у человека должно сохраняться светоощущение с неправильной проекцией. То есть, он не видит, откуда идет свет, но понятия света и тьмы для него существуют. Помимо этого, есть требования к общему состоянию здоровью, учитываются хронические заболевания того же глаза.
Нашему пациенту 59 лет, и он не видит уже более 25 лет. Он из Челябинска, в молодости успел получить профессию, работал фрезеровщиком. На сегодняшний день у него также серьезно снижен слух (до сих пор среди тех, кому имплантировался бионический глаз, не было слабослышащих пациентов), и общаться ему помогает слуховой аппарат. Он оптимист, настроенный на успех, и это очень помогает в нашем общем деле.
{#vrez.59797}
Каким требованиям должна отвечать клиника, способная провести имплантацию?
— Их очень много. Клиника должна иметь самое современное оборудование и высококвалифицированных специалистов, владеющих самыми передовыми технологиями, только тогда вообще рассматривается вопрос участия в программе. Проводится годовое тестирование по оценке аппаратуры, оборудования, расходников. Обучаются и тестируются специалисты, и через какое-то время единицам дают добро. Наш Центр, созданный в 2020 году на базе Федерального научно-клинического центра оториноларингологии ФМБА России, прошел этот отбор.
Он нужен еще и потому, что сейчас мы находимся в самом начале работы в этом направлении. Проект проходит стадию клинической апробации.Небольшой мировой опыт насчитывает около 300 подобных операций, проведенных за десять лет существования технологии. А если говорить об этой, более совершенной модели — бионическом имплантате «Аргус-II» — то всего несколько десятков операций. Поэтому следует полностью исключить человеческий фактор и быть уверенным, что тестируется исключительно сама система — как она работает, что в ней позитивного или негативного, что следует улучшать, какой должна быть следующая модификация.
Кому принадлежит авторство методики?
— Инженерная часть — дело разработчика системы. Это американская — один из крупных производителей кохлеарных слуховых имплантатов. Концептуально здесь идея та же — кохлеарные имплантаты по конструкции похожи на эту систему. Электроды вводятся во внутреннее ухо для контакта со слуховым нервом, который раздражают поступающие из преобразователя микроэлектрические импульсы. Когда опыт работы с кохлеарными имплантатами показал их эффективность, у компании появилась идея сделать подобное в офтальмологии. Но с сетчаткой, конечно, работать на несколько порядков сложнее, чем со слуховым нервом — это совершенно разные системы.
Что касается хирургии, то офтальмологическая технология была разработана нашими зарубежными коллегами, которые стали в этом деле первопроходцами. Мы сейчас включились в этот научно-клинический процесс, используя эту технологию, отмечаем какие-то нюансы, которые можно изменить, сделать, на наш взгляд, лучше. Человеческая мысль всегда ищет ответ на вопрос: как добиться максимальной эффективности, и сделать это технически более просто. Сейчас мы собрали эту конструкцию, и уже стало понятно, что, если ее сделать в два раза меньше, она будет легче имплантироваться, будет удобней манипулировать с ней.
Если же смотреть на эту историю с научной точки зрения, то сделан маленький шаг на пути к познанию того, каким образом функционирует наша зрительная система. Сегодня мы чуть больше знаем глаз, меньше — сетчатку, еще меньше — зрительный нерв, проводящие пути работы коркового анализатора. Существуют, конечно, определенные гипотезы, но как это происходит на самом деле, еще предстоит расшифровать. Связь между мозгом пациента, которому имплантирована бионическая сетчатка и картинкой будет происходить через электронную систему, которая создана человеком, понимающим, как она работает. И, благодаря этому, появляется элемент кода для расшифровки великой тайны природы под названием зрение.
Вы уже начали готовиться к следующей такой операции? Она вообще планируется?
— Да, планируется на осень.
И такие операции можно будет поставить на поток? Сколько вообще россиян нуждаются в имплантации бионической сетчатки?
— Заболеваемость такой патологией примерно один человек на 4-5 тысяч. То есть, около 40-50 тысяч на всю Россию. И, значит, в ближайшие годы в подобной операции будет нуждаться несколько тысяч человек. Сама система «Argus II» стоит около 10 миллионов рублей, и сейчас ее оплату взяли на себя несколько благотворительных фондов. («Со-единение», «Искусство, наука и спорт»). Но в принципе, все возможно, если поставить такую задачу. В свое время была поставлена задача — внедрить микрохирургические технологии и обеспечить население имплантацией искусственного хрусталика.
И поначалу это тоже представлялось фантастикой.
— В марте 1986 года была создана такая правительственная программа МНТК «Микрохирургии глаза», возглавил которую академик Святослав Николаевич Федоров. Я был в этом проекте с первого дня. А одним из крестных отцов этой программы стал премьер-министр Николай Иванович Рыжков, благодаря его содействию в течение трех лет мы построили 12 центров по всей стране. Строительство каждой клиники обошлось в 9-10 миллионов тех рублей, и еще около 1,5 миллионов валюты пошло на оборудование — вот цена вопроса. Для Советского Союза это были вообще копейки. Они сейчас благополучно функционируют и обеспечивают потребности всей страны и, более того — еще и обучили этой технологии остальных врачей. И уже в 2010 году Минздрав рапортовал о том, что больше 95% операций в стране выполняются микрохирургическими методами. То есть, задача, которую нам в свое время поставило правительство Союза, была полностью выполнена.
То есть, за 20-25 лет проблема была решена в национальном масштабе.
— Да, причем решена так, что мы вышли на самый высокий уровень в мировой офтальмологии. К нам начали приезжать пациенты из развитых стран. В мою бытность генеральным директором МНТК «МГ» мы оперировали до пяти тысяч иностранцев — немцев, итальянцев, жителей богатых стран Персидского залива. А в 2009 году мы отпраздновали пятимиллионную операцию. Система ежегодно обследовала миллион пациентов. И это был не предел, в отдельных филиалах, где были отработаны отношения с региональными органами здравоохранения, своевременно направлявшими сюда больных, показатели были вдвое больше.
Что для этого было нужно? Люди. Прежде всего, лидер, способный собрать вокруг себя таких же энтузиастов, молодых заряженных ребят, немного денег и очень много желания. А главное было — не мешать, проекту развиваться.Мы смогли понять все плюсы и минусы существовавших в мире технологий, усовершенствовать их и за счет этого вывести отечественную офтальмологию на мировой уровень.
Так что, у меня есть богатый практический опыт внедрения в советскую и российскую офтальмологию технологий, которых ранее просто не существовало, а также опыт постоянного усовершенствования внедренных методик. И это стало еще одним серьезным конкурентным преимуществом, которое повлияло на выбор нашей клиники НИЦ офтальмологии РНИМУ для проведения первой имплантации бионического глаза.